

NERSC – National Energy Research Scientific Computing Center

Presentation to the NRC Panel on "The Future of Supercomputing"

Horst D. Simon

Director, NERSC Center Division, LBNL Washington D.C., December 4, 2003 http://www.nersc.gov/~simon

Flagship facility for unclassified computing in the DOE Office of Science

- computational projects in all areas of DOE science
- about 2000 users in ~200 projects

focus on large-scale computing

Capability Computing at NERSC

- Capability means
 - Large amount of time
 - Large amount of memory
 - Large number of processors
 - Large amount of data
- Focus on large scale computational science that cannot be done elsewhere

NERSC Center Overview

- Funded by DOE, annual budget \$28M, about 65 staff
 - Traditional strategy to invest equally in newest compute platform, staff, and other resources
- Supports open, unclassified, basic research
- Close collaborations between university and NERSC in computer science and computational science

Components of the Next-Generation NERSC

New Technology Introduction

- About 25% of the staff dedicated to innovation and evolving services
 - Large data resources and management
 - Grid access
 - Innovative algorithms, software, and tools
 - New systems (computing, storage, and visualization)
- Example: Global Unified Parallel File System
 - Leading activity in addressing a common requirement for large scale shared storage

Usage by Discipline and Institution Type

NERSC Usage by Scientific Discipline, FY02

NERSC Usage by Institution Type, FY02

Usage by PI Institution

Leading DOE Laboratory Usage at NERSC, FY02 (>200,000 processor hours)

Leading Academic and Related Usage at NERSC, FY02 (>500,000 processor hours)

"Seaborg" Characteristics

- 416 16-way Power 3+ nodes with each CPU at 1.5 Gflop/s
- 6,656 CPUs 6,080 for computation
- Total Peak Performance of 10 Tflop/s
- Total Aggregate Memory is 7.8 TB
- Total GPFS disk will be 44 TB

One of the largest computational platforms in production use

NERSC System Architecture

Capability Computing in a Production Environment

- Seaborg has reached 95% utilization
- Large jobs (> 512 processors) account for about 50% of usage
- Number of projects declined from more than 400 in 2001 to less than 200 in 2003
- INCITE special allocation for 1- 3 projects using 10% of Seaborg

Large Job Sizes Run Regularly

Cumulative Storage Use at NERSC

Monthly I/O Activity to Storage by Platform = 57 TB

NERSC is a Net Importer of Traffic

NERSC Border Traffic

- Traffic across the NERSC border:
 - April 2003 29.5 TB
 - May 2003 39.4 TB
- NERSC traffic accounts for approximately 20% of total ESNet traffic
- 76% of the NERSC traffic is inbound

Multi-Teraflops Spin Dynamics Studies of the Magnetic Structure of FeMn and FeMn/Co Interfaces

Exchange bias, which involves the use of an antiferromagnetic (AFM) layer such as FeMn to pin the orientation of the magnetic moment of a proximate ferromagnetic (FM) layer such as Co, is of fundamental importance in magnetic multilayer storage and read head devices.

A larger simulation of 4000 atoms of FeMn ran at 4.42 Teraflops on 250 nodes.

(ORNL, Univ. of Tennessee, LBNL(NERSC) and PSC)

IPDPS03 A. Canning, B. Ujfalussy, T.C. Shulthess, X.-G. Zhang, W.A. Shelton, D.M.C. Nicholson, G.M. Stocks, Y. Wang, T. Dirks

Section of an FeMn/Co (Iron Manganese/ Cobalt) interface showing the final configuration of the magnetic moments for five layers at the interface.

Shows a new magnetic structure which is different from the 3Q magnetic structure of pure FeMn.

NERSC Supports Efficient Science of Scale

<u>Project</u>	Performance	CPU Count	
	(% of p	(% of peak)	
Terascale Simulations of Supernovae	35%	2048	
Accelerator Science and Simulation	25%	4096	
Electromagnetic Wave-Plasma Interactions	68%	2048	
Quantum Chromodynamics at High Temperature	13%	1024	

These are real applications, for example:

- Terascale Simulation of Supernovae
- •PI: Tony Mezzacappa, ORNL
- Code: neutrino scattering on lattices (OAK3D)
- •Kernel: complex linear equations
- •Performance: 537 Mflop/s per proc.
- Scalability: 1.1 Tflop/s on 2,048 processors
- Allocation: 565,000 MPP hours; requested and needs 1.52 million

NERSC Systems Will Evolve

NERSC and the **Grid**

- Data grid activities are most valuable for NERSC user community
 - PDSF has been grid enabled for about 2 years
 - Developed gridftp for HPSS
 - Collaboration with IBM about deploying grid technology
- Fully subscribed resources at NERSC make computational resource sharing less interesting
- "Nearby Supernova Factory" project at NERSC a prototype example of cyberinfrastructure

Nearby Supernova Factory

- Goal: Find and examine in detail up to 300 nearby
 Type la supernovae
 - More detailed sample against which older, distant supernovae can be compared
- Discovered 34 supernovae during first year of operation and now discovering 8-9 per month
- First year: processed 250,000 images, archived
 6 TB of compressed data
- This discovery rate is made possible by:
 - high-speed data link
 - custom data pipeline software
 - NERSC's ability to store and process
 50 gigabytes of data every night

Nearby Supernova Factory

- Every night, images from the Near Earth Asteroid Tracking program (NEAT) at Mount Palomar and Maui are sent to NERSC via ESnet and a special link in SDSC's High Performance Wireless Research and Education Network (HPWREN)
- Custom data pipeline software automatically archives images in NERSC's HPSS

- Image subtraction software running on PDSF sifts through billions of objects to find supernovae
- Follow-up spectrographic observations are obtained the next night and sent to NERSC and other centers for analysis
- First major discovery: First detection of hydrogen in the form of circumstellar material around a supernova

Summary

- NERSC provides highly effective computational services and resources in order the meet the needs of DOE Office of Science
 - Highest quality services
 - Extremely usable and effective systems
- NERSC enables computational science not possible elsewhere

